In this study, we exploit the sensitivity offered by surface-enhanced Raman scattering (SERS) for the direct detection of thrombin using the thrombin-binding aptamer (TBA) as molecular receptor. The technique utilizes immobilized silver nanoparticles that are functionalized with thiolated thrombin-specific binding aptamer, a 15-mer (5'-GGTTGGTGTGGTTGG-3') quadruplex forming oligonucleotide. In addition to the Raman vibrational bands corresponding to the aptamer and blocking agent, new peaks (mainly at 1140, 1540, and 1635 cm(-1)) that are characteristic of the protein are observed upon binding of thrombin. These spectral changes are not observed when the aptamer-nanoparticle assembly is exposed to a nonbinding protein such as bovine serum albumin (BSA). This methodology could be further used for the development of label-free biosensors for direct detection of proteins and other molecules of interest for which aptamers are available.