Left ventricular systolic torsion correlates global cardiac performance during dyssynchrony and cardiac resynchronization therapy

Am J Physiol Heart Circ Physiol. 2011 Mar;300(3):H853-8. doi: 10.1152/ajpheart.00177.2010. Epub 2010 Dec 17.

Abstract

Left ventricular (LV) systolic torsion is a primary mechanism contributing to stroke volume (SV). We hypothesized that change in LV torsion parallels changes in global systolic performance during dyssynchrony and cardiac resynchronization therapy (CRT). Seven anesthetized open chest dogs had LV pressure-volume relationship. Apical, basal, and mid-LV cross-sectional echocardiographic images were studied by speckle tracking analysis. Right atrial (RA) pacing served as control. Right ventricular (RV) pacing simulated left bundle branch block. Simultaneous RV-LV free wall and RV-LV apex pacing (CRTfw and CRTa, respectively) modeled CRT. Dyssynchrony was defined as the time difference in peak strain between earliest and latest segments. Torsion was calculated as the maximum difference between the apical and basal rotation. RA pacing had minimal dyssynchrony (52 ± 36 ms). RV pacing induced dyssynchrony (189 ± 61 ms, P < 0.05). CRTa decreased dyssynchrony (46 ± 36 ms, P < 0.05 vs. RV pacing), whereas CRTfw did not (110 ± 96 ms). Torsion during baseline RA was 6.6 ± 3.7°. RV pacing decreased torsion (5.1 ± 3.6°, P < 0.05 vs. control), and reduced SV, stroke work (SW), and dP/dt(max) compared with RA (21 ± 5 vs. 17 ± 5 ml, 252 ± 61 vs. 151 ± 64 mJ, and 2,063 ± 456 vs. 1,603 ± 424 mmHg/s, respectively, P < 0.05). CRTa improved torsion, SV, SW, and dP/dt(max) compared with RV pacing (7.7 ± 4.7°, 23 ± 3 ml, 240 ± 50 mJ, and 1,947 ± 647 mmHg/s, respectively, P < 0.05), whereas CRTfw did not (5.1 ± 3.6°, 18 ± 5 ml, 175 ± 48 mJ, and 1,699 ± 432 mmHg/s, respectively, P < 0.05). LV torsion changes covaried across conditions with SW (y = 0.94x+12.27, r = 0.81, P < 0.0001) and SV (y = 0.66x+0.91, r = 0.81, P < 0.0001). LV dyssynchrony changes did not correlate with SW or SV (r = -0.12, P = 0.61 and r = 0.08, P = 0.73, respectively). Thus, we conclude that LV torsion is primarily altered by dyssynchrony, and CRT that restores LV performance also restores torsion.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Bundle-Branch Block / diagnostic imaging
  • Bundle-Branch Block / physiopathology
  • Cardiac Output / physiology
  • Cardiac Resynchronization Therapy*
  • Dogs
  • Echocardiography / methods
  • Heart Ventricles / diagnostic imaging
  • Heart Ventricles / physiopathology*
  • Male
  • Torsion, Mechanical*
  • Ventricular Dysfunction, Left / diagnostic imaging
  • Ventricular Dysfunction, Left / physiopathology
  • Ventricular Dysfunction, Left / therapy
  • Ventricular Function / physiology*