A compact beta model of huntingtin toxicity

J Biol Chem. 2011 Mar 11;286(10):8188-8196. doi: 10.1074/jbc.M110.192013. Epub 2011 Jan 5.

Abstract

Huntington disease results from an expanded polyglutamine region in the N terminus of the huntingtin protein. HD pathology is characterized by neuronal degeneration and protein inclusions containing N-terminal fragments of mutant huntingtin. Structural information is minimal, though it is believed that mutant huntingtin polyglutamine adopts β structure upon conversion to a toxic form. To this end, we designed mammalian cell expression constructs encoding compact β variants of Htt exon 1 N-terminal fragment and tested their ability to aggregate and induce toxicity in cultured neuronal cells. In parallel, we performed molecular dynamics simulations, which indicate that constructs with expanded polyglutamine β-strands are stabilized by main-chain hydrogen bonding. Finally, we found a correlation between the reactivity to 3B5H10, an expanded polyglutamine antibody that recognizes a compact β rich hairpin structure, and the ability to induce cell toxicity. These data are consistent with an important role for a compact β structure in mutant huntingtin-induced cell toxicity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Line
  • Humans
  • Huntingtin Protein
  • Hydrogen Bonding
  • Mice
  • Models, Biological*
  • Nerve Tissue Proteins / chemistry
  • Nerve Tissue Proteins / genetics
  • Nerve Tissue Proteins / metabolism*
  • Nuclear Proteins / chemistry
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism*
  • Protein Structure, Secondary

Substances

  • HTT protein, human
  • Huntingtin Protein
  • Nerve Tissue Proteins
  • Nuclear Proteins