Experimental selection of hypoxia-tolerant Drosophila melanogaster

Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2349-54. doi: 10.1073/pnas.1010643108. Epub 2011 Jan 24.

Abstract

Through long-term laboratory selection (over 200 generations), we have generated Drosophila melanogaster populations that tolerate severe, normally lethal, levels of hypoxia. Because of initial experiments suspecting genetic mechanisms underlying this adaptation, we compared the genomes of the hypoxia-selected flies with those of controls using deep resequencing. By applying unique computing and analytical methods we identified a number of DNA regions under selection, mostly on the X chromosome. Several of the hypoxia-selected regions contained genes encoding or regulating the Notch pathway. In addition, previous expression profiling revealed an activation of the Notch pathway in the hypoxia-selected flies. We confirmed the contribution of Notch activation to hypoxia tolerance using a specific γ-secretase inhibitor, N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), which significantly reduced adult survival and life span in the hypoxia-selected flies. We also demonstrated that flies with loss-of-function Notch mutations or RNAi-mediated Notch knockdown had a significant reduction in hypoxia tolerance, but those with a gain-of-function had a dramatic opposite effect. Using the UAS-Gal4 system, we also showed that specific overexpression of the Notch intracellular domain in glial cells was critical for conferring hypoxia tolerance. Unique analytical tools and genetic and bioinformatic strategies allowed us to discover that Notch activation plays a major role in this hypoxia tolerance in Drosophila melanogaster.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptation, Physiological / drug effects
  • Adaptation, Physiological / genetics*
  • Amyloid Precursor Protein Secretases / antagonists & inhibitors
  • Amyloid Precursor Protein Secretases / genetics
  • Amyloid Precursor Protein Secretases / metabolism
  • Animals
  • Chromosomes, Insect / genetics*
  • Chromosomes, Insect / metabolism
  • DNA / genetics
  • DNA / metabolism
  • Dipeptides / pharmacology
  • Drosophila Proteins / genetics*
  • Drosophila Proteins / metabolism
  • Drosophila melanogaster
  • Hypoxia / genetics*
  • Hypoxia / metabolism
  • Mutation
  • Protein Structure, Tertiary
  • Receptors, Notch / genetics*
  • Receptors, Notch / metabolism
  • Selection, Genetic*
  • X Chromosome / genetics*
  • X Chromosome / metabolism

Substances

  • Dipeptides
  • Drosophila Proteins
  • N protein, Drosophila
  • N-(N-(3,5-difluorophenacetyl)alanyl)phenylglycine tert-butyl ester
  • Receptors, Notch
  • DNA
  • Amyloid Precursor Protein Secretases