A screen to identify small molecule inhibitors of protein-protein interactions in mycobacteria

Assay Drug Dev Technol. 2011 Jun;9(3):299-310. doi: 10.1089/adt.2010.0326. Epub 2011 Jan 31.

Abstract

Despite extensive efforts in tuberculosis (TB) drug research, very few novel inhibitors have been discovered. This issue emphasizes the need for innovative methods to discover new anti-TB drugs. In this study, we established a new high-throughput screen (HTS) platform technology that differs from traditional TB drug screens because it utilizes Mycobacterial-Protein Fragment Complementation (M-PFC) to identify small molecule inhibitors of protein-protein interactions in mycobacteria. Several examples of protein-protein interactions were tested with M-PFC to highlight the diversity of selectable drug targets that could be used for screening. These included interactions of essential regulators (IdeR dimerization), enzymatic complexes (LeuCD), secretory antigens (Cfp10-Esat6), and signaling pathways (DevR dimerization). The feasibility of M-PFC in a HTS platform setting was tested by performing a proof-of-concept quantitative HTS of 3,600 small molecule compounds on DevR-DevR interaction, which was chosen because of its strong implications in Mycobacterium tuberculosis persistence and the need for effective drugs against latent TB. The calculated Z'-factor was consistently ≥0.8, indicating a robust and reproducible assay. Completion of the proof-of-concept screen allowed for the identification of advantages and disadvantages in the current assay design, where improvements made will further pioneer M-PFC-based applications in a large-scale HTS format.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antitubercular Agents / pharmacology*
  • Bacterial Proteins / metabolism*
  • Drug Evaluation, Preclinical / methods*
  • Mycobacterium tuberculosis / metabolism*
  • Protein Binding / drug effects
  • Protein Interaction Mapping / methods*

Substances

  • Antitubercular Agents
  • Bacterial Proteins