Purpose: The International Prognostic Scoring System (IPSS) remains the most commonly used system for risk classification in myelodysplastic syndromes (MDSs). The IPSS gives more weight to blast count than to cytogenetics. However, previous publications suggested that cytogenetics are underweighted in the IPSS. Here we investigate the prognostic impact of cytogenetic subgroups compared with that of bone marrow blast count in a large, multicentric, international patient cohort.
Patients and methods: In total, 2,351 patients with MDS who have records in the German-Austrian and the MD Anderson Cancer Center databases were included and analyzed in univariate and multivariate models regarding overall survival and risk of transformation to acute myeloid leukemia (AML). The data were analyzed separately for patients treated with supportive care without specific therapy, with AML-like chemotherapy, or with other therapy regimens (low-dose chemotherapy, demethylating agents, immune modulating agents, valproic acid, and cyclosporine).
Results: The prognostic impact of poor-risk cytogenetic findings (as defined by the IPSS classification) on overall survival was as unfavorable as an increased (> 20%) blast count. The hazard ratio (compared with an abnormal karyotype or a bone marrow blast count < 5%) was 3.3 for poor-risk cytogenetics, 4.8 for complex abnormalities harboring chromosomes 5 and/or 7, and 3.1 for a blast count of 21% to 30% (P < .01 for all categories). The predictive power of the IPSS cytogenetic subgroups was unaffected by type of therapy given.
Conclusion: The independent prognostic impact of poor-risk cytogenetics on overall survival is equivalent to the impact of high blast counts. This finding should be considered in the upcoming revision of the IPSS.