The dosimetric measurement and modeling of small radiation treatment fields (<2 × 2 cm2) are difficult to perform and prone to error. Measurements of small fields are often adversely influenced by the properties of the detectors used to make them. The dosimetric properties of small fields have been difficult to accurately model due to the effects of source occlusion caused by the collimating jaws. In this study, small longitudinal slice widths (SWs) of the TomoTherapy® Hi-Art® machine are characterized by performing dosimetric measurements topographically. By using a static gantry, opening the central 16 MLC leaves during the irradiations, and symmetrically scanning detectors 10 cm through each longitudinal SW, integral doses to a 'TomoTherapy equivalent' 10 × 10 cm2 area are topographically measured. To quantify the effects of source occlusion for TomoTherapy, a quantity referred to as the integral scanned dose to slice width ratio (D/SW) is introduced. (D/SW) ratios are measured for SWs ranging from 0.375 to 5 cm in size using ion chambers and a radiographic film. The measurements of the (D/SW) ratio are shown to be insensitive to the detectors used in this study. The (D/SW) ratios for TomoTherapy have values of unity in the range of SW sizes from 5 cm to approximately 2 cm. For SWs smaller than 2 cm in size, the source-occlusion effect substantially reduces the measured machine output and the value of the (D/SW) ratios. The topographic measurement method presented provides a way to directly evaluate the accuracy of the small-field source model parameters used in dose calculation algorithms. As an example, the electron source spot size of a Penelope Monte Carlo (MC) model of TomoTherapy was varied to match computed and measured (D/SW) ratios. It was shown that the MC results for small SW sizes were sensitive to that particular parameter.