Conduction Properties Of Decellularized Nerve Biomaterials

IFMBE Proc. 2010 Apr 30:32:430-433. doi: 10.1007/978-3-642-14998-6_109.

Abstract

The purpose of this study is to optimize poly(3,4,-ethylenedioxythiophene) (PEDOT) polymerization into decellular nerve scaffolding for interfacing to peripheral nerves. Our ultimate aim is to permanently implant highly conductive peripheral nerve interfaces between amputee, stump, nerve fascicles and prosthetic electronics. Decellular nerve (DN) scaffolds are an FDA approved biomaterial (Axogen ) with the flexible tensile properties needed for successful permanent coaptation to peripheral nerves. Biocompatible, electroconductive, PEDOT facilitates electrical conduction through PEDOT coated acellular muscle. New electrochemical methods were used to polymerize various PEDOT concentrations into DN scaffolds without the need for a final dehydration step. DN scaffolds were then tested for electrical impedance and charge density. PEDOT coated DN scaffold materials were also implanted as 15-20mm peripheral nerve grafts. Measurement of in-situ nerve conduction immediately followed grafting. DN showed significant improvements in impedance for dehydrated and hydrated, DN, polymerized with moderate and low PEDOT concentrations when they were compared with DN alone (a ≤ 0.05). These measurements were equivalent to those for DN with maximal PEDOT concentrations. In-situ, nerve conduction measurements demonstrated that DN alone is a poor electro-conductor while the addition of PEDOT allows DN scaffold grafts to compare favorably with the "gold standard", autograft (Table 1). Surgical handling characteristics for conductive hydrated PEDOT DN scaffolds were rated 3 (pliable) while the dehydrated models were rated 1 (very stiff) when compared with autograft ratings of 4 (normal). Low concentrations of PEDOT on DN scaffolds provided significant increases in electro active properties which were comparable to the densest PEDOT coatings. DN pliability was closely maintained by continued hydration during PEDOT electrochemical polymerization without compromising electroconductivity.