Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI

Brain Topogr. 2011 Oct;24(3-4):302-15. doi: 10.1007/s10548-011-0196-8. Epub 2011 Aug 14.

Abstract

Brain plasticity can be conceptualized as nature's invention to overcome limitations of the genome and adapt to a rapidly changing environment. As such, plasticity is an intrinsic property of the brain across the lifespan. However, mechanisms of plasticity may vary with age. The combination of transcranial magnetic stimulation (TMS) with electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) enables clinicians and researchers to directly study local and network cortical plasticity, in humans in vivo, and characterize their changes across the age-span. Parallel, translational studies in animals can provide mechanistic insights. Here, we argue that, for each individual, the efficiency of neuronal plasticity declines throughout the age-span and may do so more or less prominently depending on variable 'starting-points' and different 'slopes of change' defined by genetic, biological, and environmental factors. Furthermore, aberrant, excessive, insufficient, or mistimed plasticity may represent the proximal pathogenic cause of neurodevelopmental and neurodegenerative disorders such as autism spectrum disorders or Alzheimer's disease.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging / physiology*
  • Animals
  • Brain Diseases / physiopathology*
  • Brain Mapping
  • Cerebral Cortex / physiology*
  • Electroencephalography
  • Humans
  • Magnetic Resonance Imaging
  • Models, Animal
  • Nerve Net / physiology*
  • Neuronal Plasticity / physiology*
  • Transcranial Magnetic Stimulation