Background: MazF is an endoribonuclease encoded by Escherichia coli that specifically cleaves the ACA sequence of mRNA. In our previous report, conditional expression of MazF in the HIV-1 LTR rendered CD4+ T lymphocytes resistant to HIV-1 replication. In this study, we examined the in vivo safety and persistence of MazF-transduced cynomolgus macaque CD4+ T cells infused into autologous monkeys.
Methodology/principal findings: The in vivo persistence of the gene-modified CD4+ T cells in the peripheral blood was monitored for more than half a year using quantitative real-time PCR and flow cytometry, followed by experimental autopsy in order to examine the safety and distribution pattern of the infused cells in several organs. Although the levels of the MazF-transduced CD4+ T cells gradually decreased in the peripheral blood, they were clearly detected throughout the experimental period. Moreover, the infused cells were detected in the distal lymphoid tissues, such as several lymph nodes and the spleen. Histopathological analyses of tissues revealed that there were no lesions related to the infused gene modified cells. Antibodies against MazF were not detected. These data suggest the safety and the low immunogenicity of MazF-transduced CD4+ T cells. Finally, gene modified cells harvested from the monkey more than half a year post-infusion suppressed the replication of SHIV 89.6P.
Conclusions/significance: The long-term persistence, safety and continuous HIV replication resistance of the mazF gene-modified CD4+ T cells in the non-human primate model suggests that autologous transplantation of mazF gene-modified cells is an attractive strategy for HIV gene therapy.