Single electron transfer (SET) via ion/neutral complex (INC) was proposed and confirmed to be the key step in the formation of N-centered odd-electron ions from fragmentation of protonated even-electron ions in the present study. Upon collisional activation, the model compounds, protonated N,N'-dibenzylpiperazine and protonated N-benzylpiperazines initially dissociated to form intermediate INCs consisting of N-benzylpiperazine (or piperazine) and benzyl cation. In these ion/neutral complexes, SET reaction and direct separation as well as other reactions were observed and characterized experimentally and theoretically. Density functional theory calculations demonstrated that the energy requirement for homolysis of the precursor ion was so large that it could not be achieved, whereas the heterolytic dissociation followed by electron transfer via INC was energetically preferred. The SET process occurred only when the radical products were more stable than the separation products. The energy barrier for SET in the compounds studied was roughly estimated by comparison with other competing reactions. When the INC contained electron donor with lower ionization energy and electron acceptor with higher electron affinity, the SET reaction was more efficient.