Adaptive co-evolution of mammals and bacteria has led to the establishment of complex commensal communities on mucosal surfaces. In spite of having available a wealth of immune-sensing and effector mechanisms capable of triggering inflammation in response to microbial intrusion, mucosal immune cells establish an intimate dialogue with microbes to generate a state of hyporesponsiveness against commensals and active readiness against pathogens. A key component of this homeostatic balance is IgA, a noninflammatory antibody isotype produced by mucosal B cells through class switching. This process involves activation of B cells by IgA-inducing signals originating from mucosal T cells, dendritic cells, and epithelial cells. Here, we review the mechanisms by which mucosal B cells undergo IgA diversification and production and discuss how the study of primary immunodeficiencies facilitates better understanding of mucosal IgA responses in humans.
© 2011 New York Academy of Sciences.