A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes

Transcription. 2012 Mar-Apr;3(2):92-104. doi: 10.4161/trns.19783. Epub 2012 Mar 1.

Abstract

Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Actins / genetics
  • Actins / metabolism
  • Chromatin Immunoprecipitation
  • HeLa Cells
  • Humans
  • Promoter Regions, Genetic
  • RNA Interference
  • RNA Polymerase II / metabolism*
  • RNA, Small Interfering / metabolism
  • RNA, Small Nuclear / genetics
  • RNA, Small Nuclear / metabolism*
  • TATA-Binding Protein Associated Factors / antagonists & inhibitors
  • TATA-Binding Protein Associated Factors / genetics
  • TATA-Binding Protein Associated Factors / metabolism*
  • TATA-Box Binding Protein / genetics
  • TATA-Box Binding Protein / metabolism*

Substances

  • Actins
  • RNA, Small Interfering
  • RNA, Small Nuclear
  • TATA-Binding Protein Associated Factors
  • TATA-Box Binding Protein
  • U2 small nuclear RNA
  • RNA Polymerase II