MEDI-565 (also known as MT111) is a bispecific T-cell engager (BiTE®) antibody in development for the treatment of patients with cancers expressing carcinoembryonic antigen (CEA). MEDI-565 binds CEA on cancer cells and CD3 on T cells to induce T-cell mediated killing of cancer cells. To understand the molecular basis of human CEA recognition by MEDI-565 and how polymorphisms and spliced forms of CEA may affect MEDI-565 activity, we mapped the epitope of MEDI-565 on CEA using mutagenesis and homology modeling approaches. We found that MEDI-565 recognized a conformational epitope in the A2 domain comprised of amino acids 326-349 and 388-410, with critical residues F(326), T(328), N(333), V(388), G(389), P(390), E(392), I(408), and N(410). Two non-synonymous single-nucleotide polymorphisms (SNPs) (rs10407503, rs7249230) were identified in the epitope region, but they are found at low homozygosity rates. Searching the National Center for Biotechnology Information GenBank® database, we further identified a single, previously uncharacterized mRNA splice variant of CEA that lacks a portion of the N-terminal domain, the A1 and B1 domains, and a large portion of the A2 domain. Real-time quantitative polymerase chain reaction analysis of multiple cancers showed widespread expression of full-length CEA in these tumors, with less frequent but concordant expression of the CEA splice variant. Because the epitope was largely absent from the CEA splice variant, MEDI-565 did not bind or mediate T-cell killing of cells solely expressing this form of CEA. In addition, the splice variant did not interfere with MEDI-565 binding or activity when co-expressed with full-length CEA. Thus MEDI-565 may broadly target CEA-positive tumors without regard for expression of the short splice variant of CEA. Together our data suggest that MEDI-565 activity will neither be impacted by SNPs nor by a splice variant of CEA.