While many of the contributing cell types and mediators of allergic asthma are known, less well understood are the factors that influence the development of allergic responses that lead to the development of allergic asthma. As the first airway cell type to respond to inhaled factors, the epithelium orchestrates downstream interactions between dendritic cells (DCs) and CD4⁺ T cells that quantitatively and qualitatively dictate the degree and type of the allergic asthma phenotype, making the epithelium of critical importance for the genesis of allergies that later manifest in allergic asthma. Amongst the molecular processes of critical importance in airway epithelium is the transcription factor, nuclear factor-kappaB (NF-κB). This review will focus primarily on the genesis of pulmonary allergies and the participation of airway epithelial NF-κB activation therein, using examples from our own work on nitrogen dioxide (NO₂) exposure and genetic modulation of airway epithelial NF-κB activation. In addition, the mechanisms through which Serum Amyloid A (SAA), an NF-κB-regulated, epithelial-derived mediator, influences allergic sensitization and asthma severity will be presented. Knowledge of the molecular and cellular processes regulating allergic sensitization in the airways has the potential to provide powerful insight into the pathogenesis of allergy, as well as targets for the prevention and treatment of asthma.
Copyright © 2012 Elsevier Ltd. All rights reserved.