The African malaria mosquito, Anopheles gambiae, is widespread south of the Sahara including in dry savannahs and semi-arid environments where no surface water exists for several months a year. Adults of the M form of An. gambiae persist through the long dry season, when no surface waters are available, by increasing their maximal survival from 4 weeks to 7 months. Dry season diapause (aestivation) presumably underlies this extended survival. Diapause in adult insects is intrinsically linked to depressed reproduction. To determine if reproduction of the Sahelian M form is depressed during the dry season, we assessed seasonal changes in oviposition, egg batch size, and egg development, as well as insemination rate and blood feeding in wild caught mosquitoes. Results from xeric Sahelian and riparian populations were compared. Oviposition response in the Sahelian M form dropped from 70% during the wet season to 20% during the dry season while the mean egg batch size among those that laid eggs fell from 173 to 101. Correspondingly, the fraction of females that exhibited gonotrophic dissociation increased over the dry season from 5% to 45%, while a similar fraction of the population retained developed eggs despite having access to water. This depression in reproduction the Sahelian M form was not caused by a reduced insemination rate. Seasonal variation in these reproductive parameters of the riparian M form population was less extreme and the duration of reproductive depression was shorter. Blood feeding responses did not change with the season in either population. Depressed reproduction during the dry season in the Sahelian M form of An. gambiae provides additional evidence for aestivation and illuminates the physiological processes involved. The differences between the Sahelian and riparian population suggest an adaptive cline in aestivation phenotypes between populations only 130 km apart.
Published by Elsevier Ltd.