Otitis media (OM) is the most common childhood bacterial infection and the major cause of conductive hearing loss in children. Mucus overproduction is a hallmark of OM. Streptococcus pneumoniae is the most common gram-positive bacterial pathogen causing OM. Among many mucin genes, MUC5AC has been found to be greatly up-regulated in the middle ear mucosa of human patients with OM. We previously reported that S. pneumoniae up-regulates MUC5AC expression in a MAPK ERK-dependent manner. We also found that MAPK phosphatase-1 (MKP-1) negatively regulates S. pneumoniae-induced ERK-dependent MUC5AC up-regulation. Therapeutic strategies for up-regulating the expression of negative regulators such as MKP-1 may have significant therapeutic potential for treating mucus overproduction in OM. However, the underlying molecular mechanism by which MKP-1 expression is negatively regulated during S. pneumoniae infection is unknown. In this study we show that phosphodiesterase 4B (PDE4B) mediates S. pneumoniae-induced MUC5AC up-regulation by inhibiting the expression of a negative regulator MKP-1, which in turn leads to enhanced MAPK ERK activation and subsequent up-regulation of MUC5AC. PDE4B inhibits MKP-1 expression in a cAMP-PKA-dependent manner. PDE4-specific inhibitor rolipram inhibits S. pneumoniae-induced MUC5AC up-regulation both in vitro and in vivo. Moreover, we show that PDE4B plays a critical role in MUC5AC induction. Finally, topical and post-infection administration of rolipram into the middle ear potently inhibited S. pneumoniae-induced MUC5AC up-regulation. Collectively, these data demonstrate that PDE4B mediates ERK-dependent up-regulation of mucin MUC5AC by S. pneumoniae by inhibiting cAMP-PKA-dependent MKP-1 pathway. This study may lead to novel therapeutic strategy for inhibiting mucus overproduction.