Accumulation of excess lipids is associated with heart failure. The effects of transgenic expression of diacylglycerol acyl transferase 1 (DGAT1) in cardiomyocytes is controversial. We explored whether mice expressing DGAT1 via the myosin heavy chain (MHC) promoter develop heart dysfunction with aging or after crossing with mice over expressing peroxisome proliferator-activated receptor γ (PPARγ) in the heart. MHC-DGAT1 transgenic mice had increased heart triglyceride but no evidence of heart dysfunction, even up to age 12 months. The MHC-DGAT1 transgene improved heart dysfunction and survival of MHC-PPARγ-expressing transgenic mice. Both diacylglycerol and ceramide levels in the heart were reduced by this cross, as were the levels of several mRNAs of genes involved in lipid metabolism. There were fewer large lipid droplets in MHC-DGAT1×MHC-PPARγ mice compared with MHC-PPARγ, but total lipid content was not changed. Therefore, overexpression of DGAT1 is not toxic to the heart but reduces levels of toxic lipids and improves lipotoxic cardiomyopathy. Moreover, the beneficial effects of DGAT1 illustrate the interrelationship of several lipid metabolic pathways and the difficulty of assigning benefit to an isolated change in one potentially toxic lipid species.