Macroalgae decrease growth and alter microbial community structure of the reef-building coral, Porites astreoides

PLoS One. 2012;7(9):e44246. doi: 10.1371/journal.pone.0044246. Epub 2012 Sep 5.

Abstract

With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anthozoa / growth & development*
  • Anthozoa / microbiology
  • Anthozoa / physiology*
  • Coral Reefs
  • Ecology
  • Ecosystem
  • Models, Biological
  • Population Dynamics
  • Seasons
  • Seaweed / physiology*

Grants and funding

This research was supported by the Florida International University College of Arts and Sciences and grant OCE #1130786 from the National Science Foundation to DEB and RVT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.