Effect of antihypertensive therapy on ventricular-arterial mechanics, coupling, and efficiency

Eur Heart J. 2013 Mar;34(9):676-83. doi: 10.1093/eurheartj/ehs299. Epub 2012 Sep 10.

Abstract

Aims: To investigate the effect of antihypertensive therapy on ventricular-arterial mechanics, coupling, and efficiency in early-stage hypertension.

Methods and results: We studied 527 participants from two clinical trials assessing the effect of blood pressure lowering on diastolic function. Participants were aged ≥45 years with early-stage hypertension, no heart failure, ejection fraction (EF) ≥50%, and diastolic dysfunction using Doppler echocardiography. Effective arterial afterload and its components were assessed along with measures of left ventricular (LV) structure and function prior to and after 24-38 weeks of antihypertensive therapy. Systolic blood pressure decreased from 154 ± 18 to 137 ± 15 mmHg at follow-up. Blood pressure reduction was associated with decreases in ventricular and arterial stiffness, improvements in systemic arterial compliance and resistance, enhanced LV ejection, and reduction in cardiac work (all P < 0.001). Changes in Ea/Ees ratio were inversely correlated with those in EF (r = -0.25; P < 0.001), stroke work index (r = -0.13; P = 0.007), and LV efficiency (r = -0.98; P < 0.001); and directly related to changes in mitral E/e' (r = 0.12; P = 0.01). Adjusting for age and blood pressure change, women and obese individuals had less enhancement in ventricular-arterial coupling and efficiency compared with men and non-obese individuals (P = 0.04 and 0.007, respectively).

Conclusion: Antihypertensive therapy reduces arterial and ventricular stiffness, enhances ventricular-arterial coupling, reduces cardiac work, and improves LV efficiency, systolic, and diastolic function. Attenuated responses in women and among obese subjects suggest that structure-function changes may be less reversible in these groups, possibly explaining their greater susceptibility to ultimately develop heart failure.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Age Factors
  • Aged
  • Antihypertensive Agents / therapeutic use*
  • Arteries / physiology
  • Blood Pressure / drug effects
  • Clinical Trials as Topic
  • Female
  • Heart Failure / physiopathology
  • Heart Failure / prevention & control
  • Humans
  • Hypertension / drug therapy*
  • Hypertension / physiopathology
  • Male
  • Middle Aged
  • Prospective Studies
  • Sex Factors
  • Stroke Volume / drug effects
  • Vascular Stiffness / drug effects
  • Ventricular Dysfunction, Left / physiopathology
  • Ventricular Function, Left / drug effects
  • Ventricular Remodeling / drug effects

Substances

  • Antihypertensive Agents