Increased plasma cholesterol concentration is associated with increased risk of cardiovascular disease. This study describes the development, validation, and analysis of a physiologically based kinetic (PBK) model for the prediction of plasma cholesterol concentrations in humans. This model was directly adapted from a PBK model for mice by incorporation of the reaction catalyzed by cholesterol ester transfer protein and contained 21 biochemical reactions and eight different cholesterol pools. The model was calibrated using published data for humans and validated by comparing model predictions on plasma cholesterol levels of subjects with 10 different genetic mutations (including familial hypercholesterolemia and Smith-Lemli-Opitz syndrome) with experimental data. Average model predictions on total cholesterol were accurate within 36% of the experimental data, which was within the experimental margin. Sensitivity analysis of the model indicated that the HDL cholesterol (HDL-C) concentration was mainly dependent on hepatic transport of cholesterol to HDL, cholesterol ester transfer from HDL to non-HDL, and hepatic uptake of cholesterol from non-HDL-C. Thus, the presented PBK model is a valid tool to predict the effect of genetic mutations on cholesterol concentrations, opening the way for future studies on the effect of different drugs on cholesterol levels in various subpopulations in silico.