Objective: To estimate prevalence of low bone mineral density (BMD) in perinatally HIV-infected (HIV+) and HIV-exposed but uninfected (HEU) children, and to determine predictors of BMD in HIV+.
Design: Cross-sectional analysis within a 15-site United States and Puerto Rico cohort study.
Methods: Total body and lumbar spine BMD were measured using dual energy-X-ray absorptiometry. BMD Z-scores accounted for bone age and sex. Multiple linear regression was used to evaluate differences in Z-scores by HIV status and for predictors of BMD in HIV+.
Results: 350 HIV+ and 160 HEU were enrolled. Mean age was 12.6 and 10.7 years for HIV+ and HEU, respectively. Most (87%) HIV+ were receiving HAART. More HIV+ than HEU had total body and lumbar spine Z-scores less than -2.0 (total body: 7 vs. 1%, P = 0.008; lumbar spine: 4 vs. 1%, P = 0.08). Average differences in Z-scores between HIV+ and HEU were attenuated after height and/or weight adjustment. Among HIV+, total body Z-scores were lower in those with higher CD4% and in those who ever used boosted protease inhibitors or lamivudine. Lumbar spine Z-scores were lower with higher peak viral load and CD4%, more years on HAART, and ever use of indinavir.
Conclusion: Rates of low BMD in HIV+ children were greater than expected based on normal population distributions. These differences were partially explained by delays in growth. As most HIV+ children in this study had not entered their pubertal growth spurt, prepubertal factors associated with BMD, magnified or carried forward, may result in sub-optimal peak BMD in adulthood.