It has been demonstrated that genomic alterations of cells in the hematopoietic microenvironment could induce myelodysplastic syndromes (MDS) with ineffective hematopoiesis and dysmorphic hematopoietic cells, and subsequent transformation to acute myeloid leukemia. This investigation is the first attempt to correlate the gene expression profile of AURKA and AURKB in a cytogenetically stratified population of mesenchymal stem cells (MSCs) from MDS patients. We found that AURKA messenger RNA was expressed at significantly higher levels in MSCs even with normal/altered karyotype when compared with hematopoietic cells and healthy donors. In addition, we found that the presence of chromosomal abnormalities (mainly aneuploidy) in hematopoietic cells/MSCs was also associated with higher levels of AURKA. Different from previous investigations, our findings, regarding AURKA expression support the hypothesis that the presence of chromosomal abnormalities in MSCs from MDS is not a consequence of the method used for chromosome preparation. They may reflect the genomic instability present in the bone marrow microenvironment of MDS patients. This information is also supported by differences observed in the growth kinetics between MSCs from healthy donors (normal karyotype) and from MDS patients with abnormal karyotype. In summary, our results may not be considered evidence that MDS and MSCs are originated from a single neoplastic clone. In fact, both cells (hematopoietic and MSCs) may probably be altered in response to damage-inducing factors, and the presence of genomic abnormalities in MSCs suggests that an unstable bone marrow microenvironment may facilitate the expansion of MDS/leukemic cells.
Copyright © 2013 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.