Recent studies have reported that founder viruses play unique roles in establishing HIV-1 infection. Understanding the biological and immunological features of envelope glycoproteins (Env) from such viruses may facilitate the development of effective vaccines against HIV-1. In this report, we evaluated the immunogenicity of gp120 immunogens from two pairs of clade B and two pairs of clade C mother-to-child transmitted (MTCT) HIV-1 variants that had various levels of sensitivity to broadly neutralizing monoclonal antibodies. Individual gp120 DNA and protein vaccines were produced from each of the eight MTCT Env antigens included in the current study. Rabbits were immunized with these gp120 immunogens by the DNA prime-protein boost approach. High level Env-specific antibody responses were elicited by all MTCT gp120 immunogens. However, their abilities to elicit neutralizing antibody (NAb) responses differed and those from relatively neutralization-resistant variants tended to be more effective in eliciting broader NAb. Results of this pilot study indicated that not all MTCT Env proteins have the same potential to elicit NAb. Understanding the mechanism(s) behind such variation may provide useful information in formulating the next generation of HIV vaccines.
Keywords: DNA-protein boost vaccination; HIV-1; antibody; immunogenicity; mother-to-child transmission.