Objective: The cellular effects of restricting fat versus carbohydrate during a low-calorie diet are unclear. The aim of this study was to examine acute effects of energy and macronutrient restriction on skeletal muscle insulin signalling in obesity.
Materials/methods: Eighteen obese individuals without diabetes underwent euglycemic-hyperinsulinemic clamp and skeletal muscle biopsy after: (a) 5days of eucaloric diet (30% fat, 50% carbohydrate), and (b) 5days of a 30% calorie-restricted diet, either low fat/high carbohydrate (LF/HC: 20% fat, 60% carbohydrate) or high-fat/low carbohydrate (HF/LC: 50% fat, 30% carbohydrate).
Results: Weight, body composition, and insulin sensitivity were similar between groups after eucaloric diet. Weight loss was similar between groups after hypocaloric diet, 1.3±1.3kg (p<0.0001 compared with eucaloric). Whole-body insulin sensitivity was unchanged after calorie restriction and similar between groups. However, ex vivo skeletal muscle insulin signalling differed depending on macronutrient composition of calorie-restricted diet. Skeletal muscle of the LF/HC group had increased insulin-stimulated tyrosine phosphorylation of IRS-1, decreased insulin-stimulated Ser307 phosphorylation of IRS-1, and increased IRS-1-associated phosphatidylinositol (PI)3-kinase activity. Conversely, insulin stimulation of tyrosine phosphorylated IRS-1 was absent and serine 307 phosphorylation of IRS-1 was increased on HF/LC, with blunting of IRS-1-associated PI3-kinase activity.
Conclusion: Acute caloric restriction with an LF/HC diet alters skeletal muscle insulin signalling in a way that improves insulin sensitivity, while acute caloric restriction with an HF/LC diet induces changes compatible with insulin resistance. In both cases, ex vivo changes in skeletal muscle insulin signalling appear prior to changes in whole body insulin sensitivity.
Copyright © 2013 Elsevier Inc. All rights reserved.