Controls upon biomass losses and char production from prescribed burning on UK moorland

J Environ Manage. 2013 May 15:120:27-36. doi: 10.1016/j.jenvman.2013.01.030. Epub 2013 Mar 15.

Abstract

Prescribed burning is a common management technique used across many areas of the UK uplands. However, there are few data sets that assess the loss of biomass during burning and even fewer data on the effect of burning on above-ground carbon stocks and production of char. During fire the production of char occurs which represents a transfer of carbon from the short term bio-atmospheric cycle to the longer term geological cycle. However, biomass is consumed leading to the reduction in litter formation which is the principal mechanism for peat formation. This study aims to solve the problem of whether loss of biomass during a fire is ever outweighed by the production of refractory forms of carbon during the fire. This study combines both a laboratory study of char production with an assessment of biomass loss from a series of field burns from moorland in the Peak District, UK. The laboratory results show that there are significant effects due to ambient temperature but the most important control on dry mass loss is the maximum burn temperature. Burn temperature was also found to be linearly related to the production of char in the burn products. Optimisation of dry mass loss, char production and carbon content shows that the production of char from certain fires could store more carbon in the ecosystem than if there had been no fire. Field results show that approximately 75% of the biomass and carbon were lost through combustion, a figure comparable to other studies of prescribed fire in other settings. Char-C production was approximately 2.6% of the carbon consumed during the fire. This study has shown that there are conditions (fast burns at high temperatures) under which prescribed fire may increase C sequestration through char production and that these conditions are within existing management options available to practitioners.

MeSH terms

  • Biomass
  • Carbon / chemistry*
  • Ecosystem
  • Fires*
  • Vereinigtes Königreich

Substances

  • Carbon