Toxicity-based assessment of the treatment performance of wastewater treatment and reclamation processes

J Environ Sci (China). 2012;24(6):969-78. doi: 10.1016/s1001-0742(11)60860-7.

Abstract

The reclamation and reuse of wastewater is one of the possible ways to relieve the serious fresh water resource crisis in China. Efficient reclamation treatment technologies ensure the safe reuse of reclaimed water. In order to screen out and evaluate technologies appropriate for reclamation treatment, a great deal of efforts have been brought to bear. In the present study, a toxicity-based method including a Photobacterium phosphoreum test for acute toxicity and SOS/umu test for genotoxicity, accompanied by the traditional physicochemical parameters DOC (dissolved organic carbon) and UV254 (absorbance at 254 nm), was used to measure the treatment performance of different reclamation processes, including the anaerobic-anoxic-oxic biological process (A2O) and subsequent physical/chemical reclamation processes (ultrafiltration, ozonation, chlorination). It was found that for the secondary effluent after the A2O process, both the toxicity and physicochemical indices had greatly decreased compared with those of the influent. However, chemical reclamation processes such as ozonation and chlorination could possibly raise toxicity levels again. Fortunately, the toxicity elevation could be avoided by optimizing the ozone dosage and using activated carbon after ozonation. It was noted that by increasing the ozone dosage to 10 mg/L and employing activated carbon with more than 10 min hydraulic retention time, toxicity elevation was controlled. Furthermore, it was shown that pre-ozonation before activated carbon and chlorination played an important role in removing organic compounds and reducing the toxicity formation potential. The toxicity test could serve as a valuable tool to evaluate the performance of reclamation processes.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon / chemistry
  • Chlorine / chemistry
  • Mutagenicity Tests
  • Oxidants / chemistry
  • Ozone / chemistry
  • Phosphates / analysis
  • Phosphates / toxicity
  • Photobacterium / drug effects
  • Quaternary Ammonium Compounds / analysis
  • Quaternary Ammonium Compounds / toxicity
  • Recycling / methods*
  • Salmonella typhimurium / drug effects
  • Salmonella typhimurium / genetics
  • Toxicity Tests, Acute
  • Waste Disposal, Fluid / methods*
  • Wastewater / analysis
  • Water Pollutants / analysis
  • Water Pollutants / toxicity*
  • Water Purification / methods*

Substances

  • Oxidants
  • Phosphates
  • Quaternary Ammonium Compounds
  • Waste Water
  • Water Pollutants
  • Chlorine
  • Ozone
  • Carbon