In Wisconsin, vegetable crops are threatened annually by infection of the aster yellows phytoplasma (AYp), the causal agent of aster yellows (AY) disease, vectored by the aster leafhopper, Macrosteles quadrilineatus Forbes. Aster leafhopper abundance and infectivity are influenced by processes operating across different temporal and spatial scales. We applied a multilevel modeling approach to partition variance in multifield, multiyear, pest scouting data sets containing temporal and spatial covariates associated with aster leafhopper abundance and infectivity. Our intent was to evaluate the relative importance of temporal and spatial covariates to infer the relevant scale at which ecological processes are driving AY epidemics and identify periods of elevated risk for AYp spread. The relative amount of aster leafhopper variability among and within years (39%) exceeded estimates of variation among farm locations and fields (7%). Similarly, time covariates explained the largest amount of variation of aster leafhopper infectivity (50%). Leafhopper abundance has been decreasing since 2001 and reached its minimum in 2010. The average seasonal pattern indicated that periods of above average abundance occurred between 11 June and 1 August. Annual infectivity appears to oscillate around an average value of 2% and seasonal periods of above average infectivity occur between 19 May and 15 July. The coincidence of the expected periods of high leafhopper abundance and infectivity increases our knowledge of when the insect moves into susceptible crop fields and when it spreads the pathogen to susceptible crops, representing a seasonal interval during which management of the insect can be focused.