Homozygous or compound heterozygous mutations in the glucocerebrosidase gene cause Gaucher disease. Moreover, heterozygous glucocerebrosidase gene mutations represent the most common genetic risk factor for Parkinson's disease (PD) known so far. Substantia nigra (SN) hyperechogenicity, a sonographic feature thought to reflect iron accumulation, has been described in both PD and Gaucher disease patients. Here we studied how clinical, genetic, and brain sonographic findings relate to the occurrence of PD in Gaucher disease. Sixteen Gaucher disease patients, 12 PD patients, and 32 control subjects were enrolled. The glucocerebrosidase genotypes were identified by DNA sequencing. All subjects underwent transcranial ultrasound, and eight Gaucher disease patients additionally MRI for comparison with SN ultrasound findings. SN hyperechogenicity and reduced echogenicity of brainstem raphe were more frequent in Gaucher disease patients (62, 37 %) than in controls (12, 12 %; p < 0.001, p < 0.05). SN hyperechogenicity in Gaucher disease patients was unrelated to type or severity of glucocerebrosidase gene mutation, but correlated with iron-sensitive MRI-T2 hypointensity of SN pars compacta, and with age at start of enzyme replacement therapy. While none of the five Gaucher disease patients with signs of PD (definite PD, n = 4; early PD, n = 1) had severe glucocerebrosidase gene mutations known to cause neuronopathic Gaucher disease, all carried a N370S allele, previously reported to predict non-neuronopathic Gaucher disease. Hyposmia, higher non-motor symptoms score (constipation, depression, executive dysfunction), and SN hyperechogenicity were characteristic features of Gaucher disease-related PD. We conclude that the combined clinical, genetic, and transcranial sonographic assessment may improve the PD risk evaluation in Gaucher disease.