We have characterized phase coherence length, spin-orbit scattering length, and the Hall factor in n-type MoS2 2D crystals via weak localization measurements and Hall-effect measurements. Weak localization measurements reveal a phase coherence length of ~50 nm at T = 400 mK for a few-layer MoS2 film, decreasing as T(-1/2) with increased temperatures. Weak localization measurements also allow us, for the first time without optical techniques, to estimate the spin-orbit scattering length to be 430 nm, pointing to the potential of MoS2 for spintronics applications. Via Hall-effect measurements, we observe a low-temperature Hall mobility of 311 cm(2)/(V s) at T = 1 K, which decreases as a power law with a characteristic exponent γ = 1.5 from 10 to 60 K. At room temperature, we observe Hall mobility of 24 cm(2)/(V s). By determining the Hall factor for MoS2 to be 1.35 at T = 1 K and 2.4 at room temperature, we observe drift mobility of 420 and 56 cm(2)/(V s) at T = 1 K and room temperature, respectively.