Background: Gastrointestinal stromal tumours (GIST) are characterised by high expression of KIT and ETV1, which cooperate in GIST oncogenesis. Our aim was to identify microRNAs that are deregulated in GIST, have a role in GIST pathogenesis, and could potentially be used as therapeutic tool.
Methods: Differentially expressed microRNAs between primary GIST (n=50) and gastrointestinal leiomyosarcomas (GI-LMS, n=10) were determined using microarrays. Selected microRNA mimics were transfected into GIST-882 and GIST-T1 cell lines to study the effects of microRNA overexpression on GIST cells. Luciferase reporter assays were used to establish regulation of target genes by selected microRNAs.
Results: MiR-17-92 and miR-221/222 cluster members were significantly (P<0.01) lower expressed in GIST vs GI-LMS and normal gastrointestinal control tissues. MiR-17/20a/222 overexpression in GIST cell lines severely inhibited cell proliferation, affected cell cycle progression, induced apoptosis and strongly downregulated protein and--to a lesser extent--mRNA levels of their predicted target genes KIT and ETV1. Luciferase reporter assays confirmed direct regulation of KIT and ETV1 by miR-222 and miR-17/20a, respectively.
Conclusion: MicroRNAs that may have an essential role in GIST pathogenesis were identified, in particular miR-17/20a/222 that target KIT and ETV1. Delivering these microRNAs therapeutically could hold great potential for GIST management, especially in imatinib-resistant disease.