We describe an improved method for comparative modeling, RosettaCM, which optimizes a physically realistic all-atom energy function over the conformational space defined by homologous structures. Given a set of sequence alignments, RosettaCM assembles topologies by recombining aligned segments in Cartesian space and building unaligned regions de novo in torsion space. The junctions between segments are regularized using a loop closure method combining fragment superposition with gradient-based minimization. The energies of the resulting models are optimized by all-atom refinement, and the most representative low-energy model is selected. The CASP10 experiment suggests that RosettaCM yields models with more accurate side-chain and backbone conformations than other methods when the sequence identity to the templates is greater than ∼15%.
Copyright © 2013 Elsevier Ltd. All rights reserved.