Various malignancies invade the CNS sanctuary site, accounting for the vast majority of CNS neoplastic foci and contributing to significant morbidity as well as mortality. The blood-brain barrier (BBB) exhibits considerable impermeability to chemotherapeutic agents, severely limiting therapeutic options available for patients developing metastatic CNS involvement, accounting for poor outcomes. The mechanisms by which malignant cells breach the highly exclusive BBB and subsequently survive in this unique anatomical site remain poorly understood, with most of the current knowledge stemming from nonmalignant and solid malignancy models. While solid and hematologic malignancies may face different challenges once within the CNS (e.g., solid tumor parenchymal metastasis compared to masses/nodules/leptomeningeal disease in hematologic malignancies), commonality exists in the process of migrating across the BBB from the circulation. Specifically considering this last point, this review aims to survey the current mechanistic knowledge regarding malignant migration across the BBB, necessarily emphasizing the better studied solid tumor and nonmalignant models with the intention of highlighting both the current knowledge gap and additional work required to effectively consider how hematopoietic malignancies breach the CNS.