Quantum dot (QD) imaging is a powerful tool for studying signaling pathways as they occur. Here we employ this tool to study adhesion molecule expression with lung inflammation in vivo. A key event in pulmonary inflammation is the regulation of vascular endothelial cell adhesion molecule-1 (VCAM), which drives activated immune cell adherence. The induction of VCAM expression is known to be associated with reactive oxygen species (ROS) production, but the exact mechanism or the cellular source of ROS that regulates VCAM in inflamed lungs is not known. NADPH oxidase 2 (NOX2) has been reported to be a major source of ROS with pulmonary inflammation. NOX2 is expressed by both endothelial and immune cells. Here we use VCAM-targeted QDs in a mouse model to show that NOX2, specifically endothelial NOX2, induces VCAM expression with lung inflammation in vivo.
Keywords: lipopolysaccharide; nicotinamide adenine dinucleotide phosphate oxidase 2; platelet endothelial cell adhesion molecule-1; reactive oxygen species; redox signaling.