Highly sensitive hot electron bolometer based on disordered graphene

Sci Rep. 2013 Dec 18:3:3533. doi: 10.1038/srep03533.

Abstract

A bolometer is a device that makes an electrical resistive response to the electromagnetic radiation resulted from a raise of temperature due to heating. The combination of the extremely weak electron-phonon interactions along with its small electron heat capacity makes graphene an ideal material for applications in ultra-fast and sensitive hot electron bolometer. However, a major issue is that the resistance of pristine graphene weakly depends on the electronic temperature. We propose using disordered graphene to obtain a strongly temperature dependent resistance. The measured electrical responsivity of the disordered graphene bolometer reaches 6 × 10(6) V/W at 1.5 K, corresponding to an optical responsivity of 1.6 × 10(5) V/W. The deduced electrical noise equivalent power is 1.2 fW/√Hz, corresponding to the optical noise equivalent power of 44 fW/√Hz. The minimal device structure and no requirement for high mobility graphene make a step forward towards the applications of graphene hot electron bolometers.

Publication types

  • Research Support, Non-U.S. Gov't