GaAs/AlGaAs nanowire photodetector

Nano Lett. 2014 May 14;14(5):2688-93. doi: 10.1021/nl5006004. Epub 2014 Apr 3.

Abstract

We demonstrate an efficient core-shell GaAs/AlGaAs nanowire photodetector operating at room temperature. The design of this nanoscale detector is based on a type-I heterostructure combined with a metal-semiconductor-metal (MSM) radial architecture, in which built-in electric fields at the semiconductor heterointerface and at the metal/semiconductor Schottky contact promote photogenerated charge separation, enhancing photosensitivity. The spectral photoconductive response shows that the nanowire supports resonant optical modes in the near-infrared region, which lead to large photocurrent density in agreement with the predictions of electromagnetic and transport computational models. The single nanowire photodetector shows a remarkable peak photoresponsivity of 0.57 A/W, comparable to large-area planar GaAs photodetectors on the market, and a high detectivity of 7.2 × 10(10) cm·Hz(1/2)/W at λ = 855 nm. This is promising for the design of a new generation of highly sensitive single nanowire photodetectors by controlling the optical mode confinement, bandgap, density of states, and electrode engineering.

Publication types

  • Research Support, Non-U.S. Gov't