[Hypoxia-responsive factor PHD2 and angiogenic diseases]

Yao Xue Xue Bao. 2014 Feb;49(2):151-7.
[Article in Chinese]

Abstract

Prolyl-4-hydroxylase domain (PHDs) family is one of the most important regulatory factors in hypoxic stress. PHD2 plays a critical role in cells and tissues adaptation to the low oxygen environment. Its hydroxylation activity regulates the stability and transcriptional activity of the hypoxia-inducible factor 1 (HIF-1), which is the key factor in response to hypoxic stress. Subsequently, PHD2 acts as an important factor in oxygen homeostasis. Studies have shown that PHD2, through its regulation on HIF-1, plays an important role in the post-ischemic neovascularization. Furthermore, under hypoxic condition, PHD2 also regulates other pathways that positively regulate angiogenesis factors HIF-1 independently. Moreover, recently, several evidences have also shown that PHD2 also affects tumor growth and metastasis in a tumor microenvironment. Based on these facts, PHD2 have been considered as a potential therapeutic target both in treating ischemic diseases and tumors. Here, we review the molecular regulation mechanism of PHD2 and its physiological and pathological functions. We focus on the role of PHD2 in both therapeutic angiogenesis for ischemic disease and tumor angiogenesis, and the current progress in utilizing PHD2 as a therapeutic target.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Humans
  • Hydroxylation
  • Hypoxia-Inducible Factor 1 / metabolism*
  • Hypoxia-Inducible Factor-Proline Dioxygenases* / antagonists & inhibitors
  • Hypoxia-Inducible Factor-Proline Dioxygenases* / physiology
  • Neoplasms / blood supply*
  • Neoplasms / metabolism
  • Neoplasms / pathology
  • Neoplasms / therapy
  • Neovascularization, Pathologic* / metabolism
  • Neovascularization, Pathologic* / pathology
  • Tumor Microenvironment
  • Vascular Diseases / pathology*
  • Vascular Diseases / therapy

Substances

  • Hypoxia-Inducible Factor 1
  • EGLN1 protein, human
  • Hypoxia-Inducible Factor-Proline Dioxygenases