DEFLATE compression algorithm corrects for overestimation of phylogenetic diversity by Grantham approach to single-nucleotide polymorphism classification

Int J Mol Sci. 2014 May 13;15(5):8491-508. doi: 10.3390/ijms15058491.

Abstract

Improvements in speed and cost of genome sequencing are resulting in increasing numbers of novel non-synonymous single nucleotide polymorphisms (nsSNPs) in genes known to be associated with disease. The large number of nsSNPs makes laboratory-based classification infeasible and familial co-segregation with disease is not always possible. In-silico methods for classification or triage are thus utilised. A popular tool based on multiple-species sequence alignments (MSAs) and work by Grantham, Align-GVGD, has been shown to underestimate deleterious effects, particularly as sequence numbers increase. We utilised the DEFLATE compression algorithm to account for expected variation across a number of species. With the adjusted Grantham measure we derived a means of quantitatively clustering known neutral and deleterious nsSNPs from the same gene; this was then used to assign novel variants to the most appropriate cluster as a means of binary classification. Scaling of clusters allows for inter-gene comparison of variants through a single pathogenicity score. The approach improves upon the classification accuracy of Align-GVGD while correcting for sensitivity to large MSAs. Open-source code and a web server are made available at https://github.com/aschlosberg/CompressGV.

MeSH terms

  • Algorithms*
  • Computational Biology / methods*
  • Genetic Variation
  • Internet
  • Models, Theoretical
  • Polymorphism, Single Nucleotide*
  • Sequence Alignment
  • User-Computer Interface