A conditional system to specifically link disruption of protein-coding function with reporter expression in mice

Cell Rep. 2014 Jun 26;7(6):2078-86. doi: 10.1016/j.celrep.2014.05.031. Epub 2014 Jun 12.

Abstract

Conditional gene deletion in mice has contributed immensely to our understanding of many biological and biomedical processes. Despite an increasing awareness of nonprotein-coding functional elements within protein-coding transcripts, current gene-targeting approaches typically involve simultaneous ablation of noncoding elements within targeted protein-coding genes. The potential for protein-coding genes to have additional noncoding functions necessitates the development of novel genetic tools capable of precisely interrogating individual functional elements. We present a strategy that couples Cre/loxP-mediated conditional gene disruption with faithful GFP reporter expression in mice in which Cre-mediated stable inversion of a splice acceptor-GFP-splice donor cassette concurrently disrupts protein production and creates a GFP fusion product. Importantly, cassette inversion maintains physiologic transcript structure, thereby ensuring proper microRNA-mediated regulation of the GFP reporter, as well as maintaining expression of nonprotein-coding elements. To test this potentially generalizable strategy, we generated and analyzed mice with this conditional knockin reporter targeted to the Hmga2 locus.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Female
  • Gene Targeting / methods*
  • Genes, Reporter*
  • Green Fluorescent Proteins / biosynthesis
  • Green Fluorescent Proteins / genetics*
  • Male
  • Mice
  • Recombination, Genetic

Substances

  • Green Fluorescent Proteins