Polyethylene glycol (PEG) is widely utilized in drug delivery and nanotechnology due to its reported "stealth" properties and biocompatibility. It is generally thought that PEGylation allows particulate delivery systems and biomaterials to evade the immune system and thereby prolong circulation lifetimes. However, numerous studies over the past decade have demonstrated that PEGylation causes significant reductions in drug delivery, including enhanced serum protein binding, reduced uptake by target cells, and the elicitation of an immune response that facilitates clearance in vivo. This report reviews some of the extensive literature documenting the detrimental effects of PEGylation, and thereby questions the wisdom behind employing this strategy in drug development.
Keywords: DNA; PEG; RNA; drug delivery; immunogenicity; polyethylene glycol; stealth; transfection.