Binding of TNF to its receptor (TNFR1) elicits the spatiotemporal assembly of two signaling complexes that coordinate the balance between cell survival and cell death. We have shown previously that, following TNF treatment, the mRNA decay protein tristetraprolin (TTP) is Lys-63-polyubiquitinated by TNF receptor-associated factor 2 (TRAF2), suggesting a regulatory role in TNFR signaling. Here we demonstrate that TTP interacts with TNFR1 in a TRAF2-dependent manner, thereby initiating the MEKK1/MKK4-dependent activation of JNK activities. This regulatory function toward JNK activation but not NF-κB activation depends on lysine 105 of TTP, which we identified as the corresponding TRAF2 ubiquitination site. Disabling TTP polyubiquitination results in enhanced TNF-induced apoptosis in cervical cancer cells. Together, we uncover a novel aspect of TNFR1 signaling where TTP, in alliance with TRAF2, acts as a balancer of JNK-mediated cell survival versus death.
Keywords: Apoptosis; Cell Proliferation; NF-κB; Tristetraprolin; Tumor Necrosis Factor (TNF); c-Jun N-terminal Kinase (JNK).
© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.