A randomly nano-structured scattering layer for transparent organic light emitting diodes

Nanoscale. 2014 Sep 21;6(18):10727-33. doi: 10.1039/c4nr01520g. Epub 2014 Aug 6.

Abstract

A random scattering layer (RSL) consisting of a random nano-structure (RNS) and a high refractive index planarization layer (HRI PL) is suggested and demonstrated as an efficient internal light-extracting layer for transparent organic light emitting diodes (TOLEDs). By introducing the RSL, a remarkable enhancement of 40% and 46% in external quantum efficiency (EQE) and luminous efficacy (LE) was achieved without causing deterioration in the transmittance. Additionally, with the use of the RSL, the viewing angle dependency of EL spectra was reduced to a marginal degree. The results were interpreted as the stronger influence of the scattering effect over the microcavity. The RSL can be applied widely in TOLEDs as an effective light-extracting layer for extracting the waveguide mode of confined light at the indium tin oxide (ITO)/OLED stack without introducing spectral changes in TOLEDs.

Publication types

  • Research Support, Non-U.S. Gov't