Structural transition at 360 K in the CaFe₅O₇ ferrite: toward a new charge ordering distribution

Inorg Chem. 2014 Oct 6;53(19):10171-7. doi: 10.1021/ic5011456. Epub 2014 Sep 9.

Abstract

An efficient synthesis route is proposed to obtain single phase powder ceramic of CaFe5O7. This complex structure can be described as an intergrowth between one CaFe2O4 unit and n = 3 slices of FeO Wüstite-type structure. A detailed structural study has been carried out at room temperature combining transmission electron microscopy (TEM) observations (ED, HREM), scanning transmission electron microscopy (STEM-HAADF), and X-ray diffraction data. The analysis of these data has revealed an unexpected supercell with a monoclinic symmetry. From the hkl conditions deduced from the electron diffraction study and the analysis of X-ray diffraction data by simulated annealing, a structural model considering the centrosymmetric P2₁/m setting can be proposed. In addition the first magnetic and electrical transport measurements are reported showing a sharp peak in magnetic susceptibility and a strong localization around 360 K, associated to a structural change from monoclinic setting to orthorhombic one.