Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells

Stem Cell Reports. 2014 Sep 9;3(3):414-22. doi: 10.1016/j.stemcr.2014.07.003. Epub 2014 Aug 14.

Abstract

Standardization of mesenchymal stromal cells (MSCs) remains a major obstacle in regenerative medicine. Starting material and culture expansion affect cell preparations and render comparison between studies difficult. In contrast, induced pluripotent stem cells (iPSCs) assimilate toward a ground state and may therefore give rise to more standardized cell preparations. We reprogrammed MSCs into iPSCs, which were subsequently redifferentiated toward MSCs. These iPS-MSCs revealed similar morphology, immunophenotype, in vitro differentiation potential, and gene expression profiles as primary MSCs. However, iPS-MSCs were impaired in suppressing T cell proliferation. DNA methylation (DNAm) profiles of iPSCs maintained donor-specific characteristics, whereas tissue-specific, senescence-associated, and age-related DNAm patterns were erased during reprogramming. iPS-MSCs reacquired senescence-associated DNAm during culture expansion, but they remained rejuvenated with regard to age-related DNAm. Overall, iPS-MSCs are similar to MSCs, but they reveal incomplete reacquisition of immunomodulatory function and MSC-specific DNAm patterns-particularly of DNAm patterns associated with tissue type and aging.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation
  • Cells, Cultured
  • DNA Methylation
  • Epigenesis, Genetic*
  • Humans
  • Induced Pluripotent Stem Cells / cytology
  • Induced Pluripotent Stem Cells / metabolism*
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / metabolism*
  • Transcriptome