Dendritic cells (DCs) modulate B-cell survival and differentiation, mainly through production of growth factors such as B lymphocyte stimulator (BLyS; also known as "B-cell factor belonging to the tumor necrosis factor family" [BAFF]). We have recently shown that, in human immunodeficiency virus (HIV)-infected individuals with rapid and those with classic disease progression, B-cell dysregulations were associated with increased BLyS expression in plasma and by blood myeloid DCs (mDCs), in contrast to aviremic HIV-infected individuals with slow disease progression (also known as "elite controllers"). In previous work with transgenic mice expressing HIV genes, B-cell dysregulations were concomitant with altered mDCs and dependent on HIV negative factor (Nef). We now report that HIV Nef is detected early after infection and despite successful therapy in plasma and BLyS-overexpressing blood mDCs of HIV-infected rapid and classic progressors, whereas it is low to undetectable in aviremic slow progressors. In vitro, HIV Nef drives monocyte-derived DCs toward BLyS overexpression through a process involving STAT1. Importantly, this is counteracted in the presence of all-trans retinoic acid. Nef thus contributes to high BLyS proinflammatory profiles in HIV-infected individuals.
Keywords: B lymphocyte stimulator (BLyS/BAFF); HIV Nef; HIV disease control versus progression; dendritic cells.
© The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: [email protected].