Objective: Our goal in this study aims to explain the polypharmacological mechanism at the molecular level responsible for the effectiveness of a traditional Chinese medicine (TCM) prescription FTZ to treat hyperlipidemia and related disease.
Design: By MDL(®) ISIS_Base 2.5, we constructed a compound database based on the FTZ constituents, which were detected in the rat serum after oral administration of the TCM through ultra-performance liquid chromatography/quadruple-time-of-flight mass-spectrometry (UPLC/Q-TOF-MS/MS) method. After validation of the virtual docking system, we used molecular screening by LigandFit which is a computational method for the shape-directed rapid docking of ligands to target protein active sites, to investigate the interactions between the components in database and lipid-modulating targets in the liver.
Results: In the prescription FTZ ingredients, there were sixteen constituents including jatrorrhizine, etc. showed potential effects towards the hyperlipidemia-related targets: HMG-CoA reductase (HMGR), squalene synthase (SQS), oxidosqualene cyclase (OSC), cholesteryl ester transfer protein (CETP), liver X receptor (LXR), farnesoid X receptor (FXR) and peroxisome proliferator-activated receptors (PPARα and PPARγ). Among the eight herbs in prescription FTZ, Rhizoma Coptidis (RC) plays the most important role in whole effect from FTZ on hyperlipidemia related disease.
Conclusions: Our research demonstrated that Chinese medicine formula FTZ has multi-target synergistic effect on hyperlipidemia and suggests the pharmacodynamic material basis could be jatrorrhizine, berberrubine, berberine and salidroside.
Keywords: Hyperlipidemia; Molecular docking; Multi-target therapeutics; Polypharmacology; Virtual screening.
Copyright © 2014 Elsevier Ltd. All rights reserved.