Imatinib, a targeted tyrosine kinase inhibitor, is the gold standard for managing chronic myeloid leukemia (CML). Despite its wide application, imatinib resistance occurs in 20-30% of individuals with CML. Multiple potential biomarkers have been identified to predict imatinib response; however, the majority of them remain externally uncorroborated. In this study, we set out to systematically identify gene/microRNA (miRNA) whose expression changes are related to imatinib response. Through a Gene Expression Omnibus search, we identified two genome-wide expression datasets that contain expression changes in response to imatinib treatment in a CML cell line (K562): one for mRNA and the other for miRNA. Significantly differentially expressed transcripts/miRNAs post imatinib treatment were identified from both datasets. Three additional filtering criteria were applied 1) miRbase/miRanda predictive algorithm; 2) opposite direction of imatinib effect for genes and miRNAs; and 3) literature support. These criteria narrowed our candidate gene-miRNA to a single pair: IL8 and miR-493-5p. Using PCR we confirmed the significant up-regulation and down-regulation of miR-493-5p and IL8 by imatinib treatment, respectively in K562 cells. In addition, IL8 expression was significantly down-regulated in K562 cells 24 hours after miR-493-5p mimic transfection (p = 0.002). Furthermore, we demonstrated significant cellular growth inhibition after IL8 inhibition through either gene silencing or by over-expression of miR-493-5p (p = 0.0005 and p = 0.001 respectively). The IL8 inhibition also further sensitized K562 cells to imatinib cytotoxicity (p < 0.0001). Our study combined expression changes in transcriptome and miRNA after imatinib exposure to identify a potential gene-miRNA pair that is a critical target in imatinib response. Experimental validation supports the relationships between IL8 and miR-493-5p and between this gene-miRNA pair and imatinib sensitivity in a CML cell line. Our data suggests integrative analysis of multiple omic level data may provide new insight into biomarker discovery as well as mechanisms of imatinib resistance.