Between 27% and 53% of all patients who undergo radical prostatectomy (RP) or radiation therapy (RT) as the first-line treatment of prostate cancer (PCa) develop a biochemical recurrence. Imaging plays a pivotal role in restaging by helping to distinguish between local relapse and metastatic disease (i.e., lymph-node and skeletal metastases). At present, the most promising tools for assessing PCa patients with biochemical recurrence are multiparametric magnetic resonance imaging (mpMRI) and positron emission tomography (PET)/computed tomography (CT) with radio-labeled choline derivatives. The main advantage of mpMRI is its high diagnostic accuracy in detecting local recurrence, while choline-PET/CT is able to identify lymph-node metastases when they are not suspicious on morphological imaging. The most recent advances in the field of fusion imaging have shown that multimodal co-registration, synchronized navigation, and combined interpretation are more valuable than the individual; separate assessment offered by different diagnostic techniques. The objective of the present essay was to describe the value of bimodal choline-PET/mpMRI fusion imaging and trimodal choline-PET/mpMRI/transrectal ultrasound (TRUS) in the assessment of PCa recurrence after RP and RT. Bimodal choline-PET/mpMRI fusion imaging allows morphological, functional, and metabolic information to be combined, thereby overcoming the limitations of each separate imaging modality. In addition, trimodal real-time choline-PET/mpMRI/TRUS fusion imaging may be useful for the planning and real-time guidance of biopsy procedures in order to obtain histological confirmation of the local recurrence.