Structural and vibrational properties of silyl (SiH3(-)) anions in KSiH3 and RbSiH3: new insight into Si-H interactions

Inorg Chem. 2015 Mar 2;54(5):2300-9. doi: 10.1021/ic502931e. Epub 2015 Feb 10.

Abstract

The alkali metal silyl hydrides ASiH3 (A = K, Rb) and their deuteride analogues were prepared from the Zintl phases ASi. The crystal structures of ASiH3 consist of metal cations and pyramidal SiH3(-) ions. At room temperature SiH3(-) moieties are randomly oriented (α modifications). At temperatures below 200 K ASiH3 exist as ordered low-temperature (β) modifications. Structural and vibrational properties of SiH3(-) in ASiH3 were characterized by a combination of neutron total scattering experiments, infrared and Raman spectroscopy, as well as density functional theory calculations. In disordered α-ASiH3 SiH3(-) ions relate closely to freely rotating moieties with C3v symmetry (Si-H bond length = 1.52 Å; H-Si-H angle 92.2 °). Observed stretches and bends are at 1909/1903 cm(-1) (ν1, A1), 1883/1872 cm(-1) (ν3, E), 988/986 cm(-1) (ν4, E), and 897/894 cm(-1) (ν2, A1) for A = K/Rb. In ordered β-ASiH3 silyl anions are slightly distorted with respect to their ideal C3v symmetry. Compared to α-ASiH3 the molar volume is by about 15% smaller and the Si-H stretching force constant is reduced by 4%. These peculiarities are attributed to reorientational dynamics of SiH3(-) anions in α-ASiH3. Si-H stretching force constants for SiH3(-) moieties in various environments fall in a range from 1.9 to 2.05 N cm(-1). These values are considerably smaller compared to silane, SiH4 (2.77 N cm(-1)). The reason for the drastic reduction of bond strength in SiH3(-) remains to be explored.