Drug delivery to atherosclerotic plaques via liposomal nanoparticles may improve therapeutic agents' risk-benefit ratios. Our paper details the first clinical studies of a liposomal nanoparticle encapsulating prednisolone (LN-PLP) in atherosclerosis. First, PLP's liposomal encapsulation improved its pharmacokinetic profile in humans (n=13) as attested by an increased plasma half-life of 63h (LN-PLP 1.5mg/kg). Second, intravenously infused LN-PLP appeared in 75% of the macrophages isolated from iliofemoral plaques of patients (n=14) referred for vascular surgery in a randomized, placebo-controlled trial. LN-PLP treatment did however not reduce arterial wall permeability or inflammation in patients with atherosclerotic disease (n=30), as assessed by multimodal imaging in a subsequent randomized, placebo-controlled study. In conclusion, we successfully delivered a long-circulating nanoparticle to atherosclerotic plaque macrophages in patients, whereas prednisolone accumulation in atherosclerotic lesions had no anti-inflammatory effect. Nonetheless, the present study provides guidance for development and imaging-assisted evaluation of future nanomedicine in atherosclerosis.
From the clinical editor: In this study, the authors undertook the first clinical trial using long-circulating liposomal nanoparticle encapsulating prednisolone in patients with atherosclerosis, based on previous animal studies. Despite little evidence of anti-inflammatory effect, the results have provided a starting point for future development of nanomedicine in cardiovascular diseases.
Keywords: Atherosclerosis; Glucocorticoids; Macrophages; Nanomedicine.
Copyright © 2015 Elsevier Inc. All rights reserved.